
DIO-pro
Manual

DDN I/O Pro�ling Group
CONFIDENTIAL

April 29, 2016

version 0.1

Copyright R© 2016 by DDN Storage
All rights reserved. This document or any portion thereof
may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher
except for the use of brief quotations in a book review.

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Maintenance . 1
1.3 Brief Introduction to DIO-pro . 1
1.4 What is DIO-pro tracking? . 2
1.5 How Does DIO-pro Work? . 3

2 Running DIO-pro 5
2.1 Objective . 5
2.2 DIO-pro Out-of-the-Box . 5
2.3 The Basics . 5

2.3.1 Collecting I/O Traces . 6
2.3.2 Converting the Log File . 6
2.3.3 Computing Statistics . 7

2.4 Environment Variables . 7
2.5 On the Accuracy of Time-stamps and Time-spans 7

3 DIO-pro and IOR Statistics Comparison 9
3.1 Objective . 9
3.2 Performance Statistics . 9
3.3 Practical Example . 10
3.4 Conclusion . 12
3.5 Terminal Outputs . 12

3.5.1 IOR terminal output . 12
3.5.2 DIO-pro log directory . 13
3.5.3 dio-pro-xml terminal output . 13
3.5.4 dio-pro-stat terminal output . 14

A Tables 15
A.1 Supported I/O Calls . 16

v

Chapter 1

Introduction

1.1 Objective

This document is a reference manual for DIO-pro, DDN’s I/O profiling tool. The document out-
lines the use of DIO-pro and its bundled applications. It also provides some technical background
and best-use practices.

Disclaimer: this document is currently a work-in-progress.

1.2 Maintenance

Currently, Karel De Vogeleer, performance analysis and modeling specialist at DDN Storage, is
the main developer of DIO-pro. If you have questions, comments, ideas or complaints about
DIO-pro, Karel can be contacted on kdevogeleer@ddn.com.

1.3 Brief Introduction to DIO-pro

DIO-pro is an I/O profiling tool designed to capture I/O events emanating from an arbitrary
application. DIO-pro observes I/O events from the point of view of the application, it is unaware
of events in the file system or storage units.

DIO-pro writes I/O traces per process to a log file in a binary format. The profiling code
of DIO-pro is located in libraries, called dio-pro*.so, that are loaded with the application
under investigation. The programs dio-pro-xml and dio-pro-stat are bundled with DIO-pro.
dio-pro-xml converts a binary log file to a human-readable format, by default formatted in xml.
dio-pro-stat calculates performance statistics based on the human readable log file.

In the following example DIO-pro is contained in a shared library called dio-pro.so. The
shared library is loaded dynamically with the application under investigation, in this case IOR,
via LD_PRELOAD:

1 $ LD_PRELOAD=dio-pro.so IOR

Each time IOR calls a function that DIO-pro profiles, IOR’s function call is redirected to DIO-
pro, which DIO-pro then forwards to the original function call. Figure 1.1 shows the abstract
time line of an arbitrary function call by IOR that is profiled by DIO-pro.

After the application the finished, a log file can be found in DIO-pro’s default log directory:
/tmp/dio-pro. For MPI-enabled applications, the DIO-pro log file is compressed with zlib. Log
files for POSIX applications are not compressed. DIO-pro suffixes compressed log file names with
the extension .gz. The compressed files can easily be decompressed using the tools gunzip and
zcat.

dio-pro-xml converts the decompressed binary log file into human readable format. dio-pro-xml
accepts the log file via a pipe, the output can then be redirected to a file:

1

Figure 1.1: Sequence diagram of a function call from IOR that is pro�led by DIO-pro. DIO-pro
intercepts I/O function calls, in this example read(), and redirects the function to the original
I/O function calls. At the same time, DIO-promeasures the performance of the function call
and records other context information at the same time.

1 $ zcat /tmp/dio-pro/*.gz | dio-pro-xml > iotrace.txt

This example decompresses all the binary log files *.gz in directory /tmp/dio-pro/, converts
them into human readable format, and stores all of it into the file iotrace.txt.

Similarly, aggregated I/O statistics can be displayed in the terminal using dio-pro-stat
based on the output of dio-pro-xml:

1 $ zcat /tmp/dio-pro/*.gz | dio-pro-xml | dio-pro-stat

1.4 What is DIO-pro tracking?

DIO-pro records I/O events in the POSIX andMPIIO interface. Events are recorded per file and pro-
cess. For each I/O event, the time stamp, time span and some context variables (event-dependent)
are stored. The time stamp have microsecond accuracy. The time spans have nanosecond accu-
racy for rdtsc-enabled processors1, otherwise the time span accuracy falls back to microseconds.
An exact list of support I/O calls tracked by DIO-pro is listed in Table ?? on page ??. The type
and number of function arguments recorded depend on the function.

DIO-pro supports the POSIX and MPIIO interface.

DIO-pro uses dlsym (see next section) to profile I/O activity. Profiling with dlsym has
the advantage that dynamically linked application don’t have to be recompiled for profiling.
By default in Linux binaries are dynamically linked. Dynamically linked binaries depend on
external libraries for execution. Statically linked binaries, on the other hand, are self contained.
Especially commercial binaries are sometimes linked statically. Sadly enough, dlsym doesn’t
work with statically linked binaries.

Like all dlsym-based profilers, DIO-pro is unable to profile statically linked binaries.

Unfortunately there is no way around this problem in user-space, without extremely intrusive
and dangerous profiling methods. We are in progress of developing an in-kernel alternative for

1Most Intel processors sport rdtsc by default. For more information see Section 2.5.

DIO-pro that is able to track statically linked binaries. A kernel module of DIO-pro has the
disadvantage of requiring root access and only handles POSIX calls. We remind the reader that
I/O profiling is not a free lunch and can be tricky in certain context! As of April 2016, the kernel
module implementation of DIO-pro is not yet available.

DIO-pro’s default configuration is not tracking I/O activity in any of the following direc-
tories: /tmp, /etc, /dev, /usr, /bin, /var, /boot, /lib, /opt, /sbin, /sys, and /proc.

The rationale for this choice is that, surprisingly enough, there may be a high amount of I/O
events during the execution of an application in one or more of these directories. Most I/O events
are related to the application, but not directly managed by the application. For example, when
executing a binary with mpirun, MPI accesses many files in the /tmp, for management purposes.
The I/O behavior of MPI may not be of particular interest.

If one or more of the above mentioned directories are of particular interest, one
can delete them from the exclusions array in file dio-pro-posix.c to let DIO-pro
track them.

1.5 How Does DIO-pro Work?

DIO-pro is able to track I/O activities with the help of dlsym. The function dlsym() takes
a "handle" of a dynamic library returned by dlopen() and the null-terminated symbol name,
returning the address where that symbol is loaded into memory2. dlsym basically can redirect
function calls of a dynamically linked binary to an arbitrary location. This allows DIO-pro to
inject profiling code for I/O related functions. Moreover, the dlsym approach does not require
root privileges. The drawback of dlsym is that it doesn’t work for statically linked binaries, i.e.,
binaries compiled with the static flag.

Invoking DIO-pro with LD_PRELOAD does not require root privileges to work!

Throughout DIO-pro’s source code, specifically the files dio-pro-mpi.c and dio-pro-posix.c,
you will find functions looking like the below example:

1 int DIO_PRO_FUNCT(functx)(FILE *fp)
2 {
3 int tmp_fd = fileno(fp);
4 uint64_t start, stop;
5 int ret;
6

7 DO_OR_DIE(functx);
8

9 start = Timer_tsc();
10 ret = __functx(fp);
11 stop = Timer_tsc();
12

13 RECORD_DATA(start, stop, ...);
14

15 return(ret);
16 }

This is the basic template that DIO-pro uses to profile a function, in this case functx. At line 7,
original functx call is redirected by dlsym to DIO-pro’s functx. The original pointer to functx is
stored in _functx. Here, DO_OR_DIE() is a macro definition that contains the dlsymmagic. Then,

2http://linux.die.net/man/3/dlsym

http://linux.die.net/man/3/dlsym

the original functx is called and encapsulated by a timer. start and stop measure the start
and end of the function call. Section 2.5 explains in more detail what happens in Timer_tsc().
After the timer is finished, the time data, and possibly other functx arguments, are stored
in a temporary log buffer. Then, DIO-proś functx returns and the application continues the
execution of the binary.

The temporary log buffer is maintained by the so-called log manager in the file log-manager.c.
The log manager contains procedures to write certain data types directly to a log buffer. This
implies that the final log file will contain binary data. The binary log file, however, is coded
quite straight forwardly. The log file’s binary encoding is elaborated in Chapter ??.

Chapter 2

Running DIO-pro

2.1 Objective

This chapter elaborates on the use of DIO-pro: how to run the program and how to deal with
the generated data. If you are impatient and don’t want to read the whole section, we suggest
you to look at the « DIO-pro Out-of-the-Box » Section 2.2. This section will get you up and
running in no time with the default settings!

2.2 DIO-pro Out-of-the-Box

In the main directory a Makefile is located that will compile the essential DIO-pro source code.
While in the main DIO-pro directory, to profile an MPI-enabled application, one executes the
following command:

1 $ LD_PRELOAD=libs/dio-pro.so ./my_application

By default DIO-pro stores recorded I/O traces in /tmp/dio-pro. To convert, the binary I/O
traces, also referred to as log files, one pipes them into dio-pro-xml:

1 $ zcat /tmp/dio-pro/* | xml/dio-pro-xml

dio-pro-stat is used to compute statistics from the log file (note the -n after dio-pro-xml):

1 $ zcat /tmp/dio-pro/* | xml/dio-pro-xml -n | stat/dio-pro-stat

Custom statistics can also be generated based on the output of dio-pro-xml.

2.3 The Basics

In the main directory a Makefile is located that will compile the source code in the directories
libs, xml, stat. The libs directory holds the profiling libraries, to be loaded with the applica-
tion under investigation. xml holds the program to translates the binary log format into human
readable format. stat holds the program that computes statistics from the human readable log
format.

By using different DIO-pro libraries different aspects of a programs I/O can be recorded:

• MPI [dio-pro-mpi.so]: only MPI I/O function calls are recorded,

• POSIX [dio-pro-posix.so]: only POSIX function calls are recorded,

5

• MPI+POSIX [dio-pro.so]1: MPI I/O and POSIX function calls are recorded,

• POSIX (stream-mode) [dio-pro-posix.stream.so]: only POSIX function calls recorded
and streamed to a FIFO.

By default DIO-pro stores log files in /tmp/dio-pro. The binary log files are compressed with
zlib for the logging involving MPI, otherwise the log file is not compressed. The POSIX-streaming
mode does not create a log file. Instead the log is streamed to a FIFO file, located by default in
/tmp/dio-pro/dio-pro.fifo2. The MPI-enabled libraries maintain a log buffer in memory, to
minimize load on the file-system. For practical motivations, the POSIX libraries don’t maintain
a memory buffer. Instead log data is written immediately to the log file in the file system.

2.3.1 Collecting I/O Traces

An arbitrary application can be profiled by DIO-pro as follows:

1 $ LD_PRELOAD=libs/dio-pro.so ./my_application

The library dio-pro.so can be replaced by any of the above mentioned libraries, depending on
your needs. After the program returns, a log file should be located in /tmp/dio-pro. The log
directory can be changed by setting the environment variable DIO_PRO_LOG_DIR (see Section 2.4).

Files terminating with .gz are compressed and can be printed to stdout with zcat. Uncom-
pressed log files end with .bin and are printed to stdout with cat.

2.3.2 Converting the Log File

Once, a log file is obtained dio-pro-xml can decode the binary format into a human readable
format, by default XML:

1 $ zcat /tmp/dio-pro/* | xml/dio-pro-xml

An alternative, layout is printed using the -n flag. The column layout is as follows:

1. JOBID: the jobid of the scheduler (-1 indicates no jobid is detected),

2. PID: the processor unique pid of the process,

3. MPI-RANK: the MPI-rank (-1 indicates that the rank is not applicable),

4. IO-TYPE (#): numerical representation of the I/O type recorded,

5. IO-TYPE (STRING): alphanumerical representation of the I/O type recorded.

These are the basic headers elements present for each entry in the log file. Depending on the
I/O event type, the following entries may follow:

• TIME STAMP [t]: time (seconds) at which the I/O event occurred (processor time),

• TIME SPAN [dt]: time (seconds) at which the I/O event occurred (processor time),

• FILE DESCRIPTOR [fd]: the file descriptor identifier of the applicable file,

• ...

It is noted that the file descriptor fd links that particular I/O event to the first preceding open
statement with the same file descriptor.

1It is noted that the dio-pro.so library may be unstable, at the moment, only if POSIX operations are called
before any MPI statements!

2The FIFO �le should be emptied by reading its content as fast as possible otherwise DIO-pro will block. This
is explained in the sequel.

2.3.3 Computing Statistics

dio-pro-stat is used to compute statistics from the set of log files (note the -n after dio-pro-xml):

1 $ zcat /tmp/dio-pro/* | xml/dio-pro-xml -n | stat/dio-pro-stat

By default dio-pro-stat will compute overall I/O performance. To show per-file statistics call
dio-pro-stat -s file, and for per-process statistics dio-pro-stat -s proc.

The output of the statistics shows the following information:

• BLOCKSIZES: the different block sizes detected in the log file, number of occurrences are
shown between square brackets,

• FUNCTION CALLS: the different types of I/O function calls listed in the log file, number of
occurrences are shown between square brackets,

• SIZE: total number of bytes transferred,

• # BLOCKS: total number of blocks transferred,

• TIME: total time spend in I/O function calls,

• MIN SPEED: the fastest I/O transfer time amongst all I/O function calls,

• AVG SPEED: the average I/O transfer time,

• MAX SPEED: the slowest I/O transfer time amongst all I/O function calls,

• STDEV SPEED: the standard deviation of the I/O speed amongst all I/O function calls.

Custom statistics can be generated based on the output of dio-pro-xml.

2.4 Environment Variables

The location and the filename of dio-pro can altered by setting the following two environment
values:

• DIO_PRO_JOBID_TAG: defines the environment variable that stores the JOBID. This is use-
full because different ecosystems may use different job scheduling software, e.g., slurm. If
either DIO_PRO_JOBID_TAG or $DIO_PRO_JOBID_TAG is not set in the environment, then
dio-pro set jobid to the value 0.

• DIO_PRO_LOG_DIR: the directory to save the log files in. If DIO_PRO_LOG_DIR is not set then
dio-pro falls back to the default log directory at /tmp/dio-pro .

2.5 On the Accuracy of Time-stamps and Time-spans

DIO-pro’s I/O traces contain time-stamps t and time-spans ∆t. Timestamps have a microsec-
ond accuracy, whereas time-spans have nanosecond accuracy. The nanosecond accuracy for
time-stamps was chosen as some simple I/O operations, e.g., stat() may be much faster than
1µs. The nanosecond accuracy is obtained by reading the clock_tick_count register. The
clock_tick_count register is available only for Intel processors and accessible via the rdtsc as-
sembly instruction. A nanosecond value is obtained by dividing clock_tick_count by the num-
ber of clock cycles per nano seconds. Intel guarantees that the pace at which clock_tick_count
is updated, is not affected by CPU frequency scaling, different CPU power states, etc.

Even though, in a source code a piece of code is encapsulated by clock_tick_count read outs,
that doesn’t guarantee that at runtime the program will be executed in that order. This may
happen due to specific compiler optimization off-line or by out-of-order-execution on-line. Such
out-of-order-execution may hamper time-span measurements. To prevent out-of-order-execution
and force serial execution, parts of the instructions in the pipeline should be flushed3. This may
incur a small performance cost which has been reported to be worst-case around 100 clock cycles
on mainstream retail CPUs. On a high performance CPU this translates to a value of the order of
100 ps. This performance cost is referred to as oc in Section 3.2. It is noted that there is no free
lunch when it comes to accurate performance measurements. A 100 ps cost to obtain nanosecond
accurate time measurements is well spent.

3“How to Benchmark Code Execution Times on Intel...”: http://www.intel.fr/content/dam/www/public/us/
en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

http://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

Chapter 3

DIO-pro and IOR Statistics
Comparison

3.1 Objective

This chapter clarifies the differences between the performance statistics displayed by IOR, a tool
for benchmarking parallel file systems, and DIO-pro, DDN’s I/O profiling tool.

3.2 Performance Statistics

In this section the differences in performance statistics computation between IOR and DIO-
pro are highlighted. In the next section, this theoretical analysis will be applied to a practical
example.

Universally, the I/O speed [B/s] is calculated as follows:

speed =
bytes

seconds
=

b

∆t
. (3.1)

Both DIO-pro and IOR’s notion of b are the same: it is the number of bytes read/written. The
reason why IOR and DIO-pro’s statistics differ lays in the interpretation of ∆t. IOR assumes
∆t to be the total execution time of certain code, which include I/O operations. On the other
hand, DIO-pro defines ∆t as the time spent solely in I/O operations. To understand what IOR1

exactly does, one needs to dive into IOR’s source code (enclosed).
IOR stores time-stamps of certain events in an array called timer[]. This time-stamp array

is min/max map reduced over the multiple ranks into the reduced array. On line IOR.c:1285
one can see that the total read and write time is calculated by the subtraction of array elements
11/6 and 5/0, respectively. When these indexes of timer[] are tracked back in the source code,
one observes

• timer[0]: time-stamp before IOR_Create() (IOR.c:2004),

• timer[5]: time-stamp after IOR_Close() (IOR.c:2030),

• timer[6]: time-stamp before IOR_Open() (IOR.c:2160),

• timer[11]: time-stamp after IOR_Close() (IOR.c:2178).

The read() and write() in IOR for POISX happen at line

• IOR.c:2173 → IOR.c:2611 → aiori-POSIX.c:251, for reading, and line
1This discussion applies to IOR version 2.10.3.

9

• IOR.c:2013 → IOR.c:2608 → aiori-POSIX.c:244, for writing.

Two things are observed: 1) IOR opens a file, reads or writes, but not both, and closes the file,
2) IOR measures ∆t as the difference in time of the start of open() and the end of close().
Moreover, it is clear from the source code that there is more than just I/O operations executed
between the open() and close() statements. Consequently, IOR’s definition of ∆t is defined as
follows:

∆tIOR = end(close())− start(open()) = (tclose() + ∆tclose())− topen(). (3.2)

DIO-pro, on the other hand, assumes ∆t to be the time effectively spend in I/O functions

∆tDIO =

n∑
k

∆t
i/o
k , (3.3)

where ∆t
i/o
k is the time spend in I/O operation k, and n is the total number of I/O operations

executed. We already notice that ∆tIOR will always be larger than ∆tDIO:

end(close())− start(open()) >

n∑
k

∆t
i/o
k . (3.4)

This follows from DIO-pro’s implementation and shown in Figure 1.1: ∆tDIO is contained by
∆tIOR. In particular, the left-hand side of Equation 3.4 equals to

end(close())− start(open()) = ∆topen() + ∆tclose() +

n∑
k

∆t
i/o
k + of + oa(n) + noc

= ∆topen() + ∆tclose() + ∆tDIO + of + oa(n) + noc, (3.5)

where of is the time it takes to call DIO-pro from IOR, oc accounts for the time lost due to
serializing the pipeline content for rdtsc (see Appendix 2.5), and oa is the time spend in between
I/O operations on other code between the open() and close() statements. of and oc are very
small values, of the order of picoseconds, which can only be measured approximately. oa(n) can
assume an arbitrary value depending on the particular program. ∆topen() and ∆tclose() are much
bigger than of and oc, but could be comparable to a ∆ti/o time wise. They are in the order of
tens of microsecond but can show a wide variance.

From Equation 3.5 we can conclude that if n grows large enough than the relative weight of
{∆topen(),∆tclose(), of , oa, oc} in ∆tIOR become negligible small

lim
n→∞

[
∆topen() + ∆tclose() +

n∑
k

∆t
i/o
k + of + oa(n) + noc

]
≈ ∆tDIO = ∆tIOR. (3.6)

In practice, this means that ∆tIOR = ∆tDIO for sufficiently large values of n and b, and a well
performing storage system.

3.3 Practical Example

To clarify the performance performance statistics differences between IOR-2.10.3 and DIO-pro,
a practical example is given. An I/O trace from IOR is recorded by DIO-pro. To keep it simple,
a single node is spawned by IOR, which writes and reads a block of 3 chucks of 4096 kB to
the file system via the POSIX interface. After IOR is finished, DIO-pro calculates performance
statistics based upon the I/O trace. The performance statistics of IOR are taken from stdout in
the terminal. The output of IOR, dio-pro-xml and dio-pro-stat can be found in Appendix 3.5.

Table 3.1 shows values inferred from the dio-pro-xml output, these include: ∆topen(),
∆tclose(), ∆ti/o, n and b. It is observed that ∆topen() for the write process is about ten times

Table 3.1: Values inferred from the dio-pro-xml output.

READ WRITE COMMON
∆topen() = 0.866µs ∆topen() = 9.639µs n = 3
∆tclose() = 0.401µs ∆tclose() = 0.694µs b = 12288B
topen() = /3.005256 s topen() = /3.005212 s
tclose() = /3.005264 s tclose() = /3.005250 s

∆t1 = 0.712µs ∆t1 = 5.726µs
∆t2 = 0.295µs ∆t2 = 2.237µs
∆t3 = 0.315µs ∆t3 = 2.004µs

Table 3.2: Average values experimentally de�ned by instrumenting IOR.

READ WRITE
ēk = 0.219µs ēk = 0.366µs

std(ek) = 0.057µs std(ek) = 0.075µs
ēm = 2.562µs ēm = 6.263µs

std(em) = 0.448µs std(em) = 1.336µs

longer than for the read process. This is because the write process also creates the file to write
to, whereas when the read open() is called, the file to read already exist. We deem of and oc
negligibly small. oa is measured experimentally by instrumenting IOR and averaging the result
over 1024 runs. In fact, we split up oa in two parts such that oa = ek + em, where

• ek is the time between the start of the IOR timer2 and open(), plus the time between the
end of close() and the end of the IOR timer, and

• em accounts for the time between open()/close() excluding I/O operations.

We intuitively understand that in most cases ek will be smaller than em. The values for ek and
em are shown in Table 3.2. It is observed that ē for the write open() is about twice as large as for
the read process. Now that we know the variables from Equation 3.3 and 3.5, we can compute
∆tIOR and ∆tDIO. ∆tDIO equals:

∆tDIO = ∆t1 + ∆t2 + ∆t3

∆treadDIO = 0.712 + 0.295 + 0.315 = 1.322µs
∆twrite

DIO = 5.726 + 2.237 + 2.004 = 9.967µs.

∆tIOR can easily be calculated via Equation 3.2:

∆tIOR = tclose() − topen() + ∆tclose() + ek

∆treadIOR = (/5264− /5256) + 0.401 + 0.219 = 8.620µs
∆twrite

IOR = (/5250− /5212) + 0.694 + 0.366 = 39.060µs.

2With IOR timer we refer to the timer that measures∆t for OIR.

Accordingly, the read and write speeds can be calculated:

speedreadDIO =
12288

1.322
= 9295.008B/µs = 8.657GiB/s

speedwrite
DIO =

12288

9.967
= 1232.868B/µs = 1.148GiB/s

speedreadIOR =
12288

8.620
= 1425.522B/µs = 1359.484MiB/s

speedwrite
IOR =

12288

39.060
= 314.59.B/µs = 300.019MiB/s.

The values for speedDIO correspond to the output of dio-pro-stat, which is expected. The
calculated values for IOR differ slightly than what is found in the terminal output. The read and
write speed show 5.1% and 1.9% error, respectively, compared to IOR’s terminal output. The
error is introduced by the uncertainty of the oa measurement. In fact, small changes of oa can
have a large effect on the speed numbers. For example, for the IOR read process oa/∆tIOR ≈ 32%
in the above example. This means that for the read process in IOR, only 32% of the time is
actually spend on I/O operations. It is thus understood that oa can control ∆tIOR, and hence
also IOR’s I/O speed indicator.

In this example, however, only three chucks of 4096 kiB are stored. In more realistic scenarios,
much larger chunks, and many more chunks are stored, which would decrease the influence of oa
on ∆tIOR.

3.4 Conclusion

It is clear that the speed indicators of IOR and DIO-pro do not correspond. That is because the
DIO-pro and IOR have different interpretations of the time-span used to calculate I/O speeds.
However, we have shown that when the number of I/O operations are sufficiently large, the speed
indicators of both DIO-pro and IOR will converge. Both approaches are equally acceptable, there
is no right or wrong here. However, each performance measurement application should be used
in its proper context. IOR is designed to test the performance of a file system. For example, the
time to flush buffers by close() is an important performance indicator that must be accounted
for by IOR. DIO-pro on the other hand is designed to measure the I/O performance of general
applications. In the context of DIO-pro, oa, the time spent between I/O operations, can be
arbitrarily large. Thus for DIO-pro the IOR approach is not appropriate.

DDN maintains the DIO-pro software, therefore it is possible for us to implement IOR-like
performance statistics in parallel to existing algorithms if their exists interest.

3.5 Terminal Outputs

3.5.1 IOR terminal output

1 $ LD_PRELOAD=/home/kare/local/lib/dio-pro.so \
2 IOR -a POSIX -t 4096 -b 12288 -o testfile.tmp
3 IOR-2.10.3: MPI Coordinated Test of Parallel I/O
4

5 Run began: Fri Apr 8 10:03:23 2016
6 Command line used: IOR -a POSIX -t 4096 -b 12288 -o testfile.tmp
7 Machine: Linux karel
8

9 Summary:
10 api = POSIX
11 test filename = testfile.tmp
12 access = single-shared-file
13 ordering in a file = sequential offsets

14 ordering inter file= no tasks offsets
15 clients = 1 (1 per node)
16 repetitions = 1
17 xfersize = 4096 bytes
18 blocksize = 12288 bytes
19 aggregate filesize = 12288 bytes
20

21

22 Operation Max (MiB) Min (MiB) Mean (MiB) Std Dev Max (OPs) Min (OPs) Mean (OPs)
23 --------- --------- --------- ---------- ------- --------- --------- ----------
24 write 294.32 294.32 294.32 0.00 75346.78 75346.78 75346.78
25 read 1293.47 1293.47 1293.47 0.00 331129.26 331129.26 331129.26
26

27 Std Dev Mean (s)
28 ------- --------
29 0.00 0.00004 EXCEL
30 0.00 0.00001 EXCEL
31

32

33 Max Write: 294.32 MiB/sec (308.62 MB/sec)
34 Max Read: 1293.47 MiB/sec (1356.31 MB/sec)
35

36 Run finished: Fri Apr 8 10:03:23 2016

3.5.2 DIO-pro log directory

After executing IOR, the log directly of DIO-pro contains the file shown below.

1 $ ls -l -h /tmp/dio-pro/*
2 -rwxr-xr-x 1 karel karel 286 Apr 8 10:03 \
3 /tmp/dio-pro/iotrace-jobid-1762-rank-0-n410943802.bin.gz

3.5.3 dio-pro-xml terminal output

The terminal output of the dio-pro-xml program can be found in the enclosed file named
dio-pro-xml.txt. The complete output is to large to fit aesthetically in this document, unfor-
tunately. Instead, below is a summary of the content relevant to the discussion. Three dots (...)
indicates that (unimportant) characters were dropped.

1 $ zcat /tmp/dio-pro/iotrace-jobid-1762-rank-0-n410943802.bin.gz | dio-pro-xml
2 ...
3 <event type="DIO_PRO_POSIX_OPEN64" ... t="1460102603.005212" dt="0.000009639" ... />
4 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000306" ... offset="0" />
5 <event type="DIO_PRO_POSIX_WRITE" ... dt="0.000005726" ... count="4096" />
6 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000125" ... offset="4096" />
7 <event type="DIO_PRO_POSIX_WRITE" ... dt="0.000002237" ... count="4096" />
8 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000099" ... offset="8192" />
9 <event type="DIO_PRO_POSIX_WRITE" ... dt="0.000002004" ... count="4096" />

10 <event type="DIO_PRO_POSIX_CLOSE" ... t="1460102603.005250" dt="0.000000694" ... />
11 <event type="DIO_PRO_POSIX_XSTAT64" ... dt="0.000000343" ... path="testfile.tmp" />
12 <event type="DIO_PRO_POSIX_OPEN64" ... t="1460102603.005256" dt="0.000000866" ... />
13 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000149" ... offset="0" />
14 <event type="DIO_PRO_POSIX_READ" ... dt="0.000000712" ... count="4096" />
15 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000094" ... offset="4096" />
16 <event type="DIO_PRO_POSIX_READ" ... dt="0.000000295" ... count="4096" />
17 <event type="DIO_PRO_POSIX_LSEEK64" ... dt="0.000000102" ... offset="8192" />
18 <event type="DIO_PRO_POSIX_READ" ... dt="0.000000315" ... count="4096" />
19 <event type="DIO_PRO_POSIX_CLOSE" ... t="1460102603.005264" dt="0.000000401" ... />
20 <event type="DIO_PRO_POSIX_XSTAT64" ... dt="0.000000253" ... path="testfile.tmp" />
21 <event type="DIO_PRO_POSIX_UNLINK" ... dt="0.000021548" pathname="testfile.tmp" />
22 ...

3.5.4 dio-pro-stat terminal output

1 $ zcat iotrace-jobid-1762-rank-0-n410943802.bin.gz | dio-pro-xml -n | dio-pro-stat
2 DIO-pro v0.1: DDNÂő Storage I/O Profiling
3 Date: 2016-04-08.15:57:11
4

5 Overall I/O Statistics:
6

7 blocksize(s) read: 4096
8 blocksize(s) write: 4096
9

10 size # blocks time min speed avg speed \
11 ------------- ---------- ------------ ------------- ------------- \
12 read 12.288 kB 3 0.000001 s 5.358 GiB/s 8.657 GiB/s \
13 write 12.288 kB 3 0.000010 s 682.195 MiB/s 1.148 GiB/s \
14

15 max speed stdev speed
16 ------------- -------------
17 12.931 GiB/s 680.526 MiB/s
18 1.904 GiB/s 4.156 GiB/s

Appendix A

Tables

15

A.1 Supported I/O Calls

Table A.1: MPIIO I/O calls tracked by DIO-pro v1.35 and the actual arguments recorded. The
associated type, as found in DIO-pro’s log s, is also shown.

I/O CALL TYPE ARGUMENTS
MPI_File_open DIO_PRO_MPI_OPEN �lename, path, amode
MPI_File_close DIO_PRO_MPI_CLOSE fh
MPI_File_sync DIO_PRO_MPI_SYNC fh
MPI_File_set_view DIO_PRO_MPI_SET_VIEW fh, disp
MPI_File_read DIO_PRO_MPI_READ fh, count
MPI_File_read_at DIO_PRO_MPI_READ_AT fh, size, o�set
MPI_File_read_at_all DIO_PRO_MPI_READ_AT_ALL fh, size, o�set
MPI_File_read_all DIO_PRO_MPI_READ_ALL fh, size
MPI_File_read_shared DIO_PRO_MPI_READ_SHARED fh, size
MPI_File_read_ordered DIO_PRO_MPI_READ_ORDERED fh, size
MPI_File_read_at_all_begin DIO_PRO_MPI_READ_AT_ALL_BEGIN fh, size, o�set
MPI_File_read_begin DIO_PRO_MPI_READ_ALL_BEGIN fh, size
MPI_File_read_ordered_begin DIO_PRO_MPI_READ_ORDERED_BEGIN fh, size
MPI_File_iread DIO_PRO_MPI_IREAD fh, size
MPI_File_iread_at DIO_PRO_MPI_IREAD_AT fh, size, o�set
MPI_File_iread_shared DIO_PRO_MPI_IREAD_SHARED fh, size
MPI_File_write DIO_PRO_MPI_WRITE fh, size
MPI_File_write_at DIO_PRO_MPI_WRITE_AT fh, size, o�set
MPI_File_write_at_all DIO_PRO_MPI_WRITE_AT_ALL fh, size, o�set
MPI_File_write_all DIO_PRO_MPI_WRITE_ALL fh, size
MPI_File_write_shared DIO_PRO_MPI_WRITE_SHARED fh, size
MPI_File_write_ordered_begin DIO_PRO_MPI_WRITE_ORDERED_BEGIN fh, size
MPI_File_write_at_all_begin DIO_PRO_MPI_WRITE_AT_ALL_BEGIN fh, size
MPI_File_write_all_begin DIO_PRO_MPI_WRITE_ALL_BEGIN fh, size
MPI_File_iwrite DIO_PRO_MPI_IWRITE fh, size
MPI_File_iwrite_at DIO_PRO_MPI_IWRITE_AT fh, size, o�set
MPI_File_iwrite_shared DIO_PRO_MPI_IWRITE_SHARED fh, size
MPI_File_file_delete DIO_PRO_MPI_FILE_DELETE �lename
MPI_File_seek DIO_PRO_MPI_SEEK fh, o�set, whence
MPI_File_seek_shared DIO_PRO_MPI_SEEK_SHARED fh, o�set, whence
MPI_File_set_size DIO_PRO_MPI_FILE_SET_SIZE fh, size
MPI_Barrier DIO_PRO_MPI_BARRIER comm

Table A.2: POSIX I/O calls tracked by DIO-pro v1.35 and the actual arguments recorded. The
associated type, as found in DIO-pro’s log s, is also shown.

I/O CALL TYPE ARGUMENTS
mkstemp DIO_PRO_POSIX_MKSTEMP template
mkostemp DIO_PRO_POSIX_MKOSTEMP template, �ags
mkstemps DIO_PRO_POSIX_MKSTEMPS template, su�xlen
mkostemps DIO_PRO_POSIX_MKOSTEMPS template, su�xlen, �ags
creat DIO_PRO_POSIX_CREAT path, mode
creat64 DIO_PRO_POSIX_CREAT path, mode
open DIO_PRO_POSIX_OPEN path, �ags
open64 DIO_PRO_POSIX_OPEN64 path, �ags
close DIO_PRO_POSIX_CLOSE fd
write DIO_PRO_POSIX_WRITE fd, count
read DIO_PRO_POSIX_READ fd, count
lseek DIO_PRO_POSIX_LSEEK fd, o�set, whence
lseek64 DIO_PRO_POSIX_LSEEK64 fd, o�set, whence
pread DIO_PRO_POSIX_PREAD fd, count, o�set
pwrite DIO_PRO_POSIX_PWRITE fd, count, o�set
readv DIO_PRO_POSIX_READV fd
writev DIO_PRO_POSIX_WRITEV fd
__fxstat DIO_PRO_POSIX_FXSTAT vers, fd
__lxstat DIO_PRO_POSIX_LXSTAT vers, path
__xstat DIO_PRO_POSIX_XSTAT vers, path
unlink DIO_PRO_POSIX_UNLINK pathname
mmap DIO_PRO_POSIX_MMAP length, prot, �ags, fd, o�set
mmap64 DIO_PRO_POSIX_MMAP64 length, prot, �ags, fd, o�set
fopen DIO_PRO_POSIX_FOPEN path, mode
fopen64 DIO_PRO_POSIX_FOPEN64 path, mode
fclose DIO_PRO_POSIX_FCLOSE fp
fread DIO_PRO_POSIX_FREAD size, nmemb, stream
fwrite DIO_PRO_POSIX_FWRITE size, nmemb, stream
fseek DIO_PRO_POSIX_FSEEK stream, o�set, whence
fsync DIO_PRO_POSIX_FSYNC fd
fdatasync DIO_PRO_POSIX_FDATASYNC fd
pread64 DIO_PRO_POSIX_PREAD64 fd, count, o�set
pwrite64 DIO_PRO_POSIX_PWRITE64 fd, count, o�set
__fxstat64 DIO_PRO_POSIX_FXSTAT64 vers, fd
__xstat64 DIO_PRO_POSIX_XSTAT64 vers, path
__lxstat64 DIO_PRO_POSIX_LXSTAT64 vers, path

	Introduction
	Objective
	Maintenance
	Brief Introduction to DIO-pro
	What is DIO-pro tracking?
	How Does DIO-pro Work?

	Running DIO-pro
	Objective
	DIO-pro Out-of-the-Box
	The Basics
	Collecting I/O Traces
	Converting the Log File
	Computing Statistics

	Environment Variables
	On the Accuracy of Time-stamps and Time-spans

	DIO-pro and IOR Statistics Comparison
	Objective
	Performance Statistics
	Practical Example
	Conclusion
	Terminal Outputs
	IOR terminal output
	DIO-pro log directory
	dio-pro-xml terminal output
	dio-pro-stat terminal output

	Tables
	Supported I/O Calls

